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Abstract

In this paper, we present a three-dimensional Poisson equation solver for the electrostatic poten-
tial of a charged beam with large longitudinal to transverse aspect ratio in a straight and a bent con-
ducting pipe with open-end boundary conditions. In this solver, we have used a Hermite-Gaussian
series to represent the longitudinal spatial dependence of the charge density and the electric poten-
tial. Using the Hermite-Gaussian approximation, the original three-dimensional Poisson equation
has been reduced into a group of coupled two-dimensional partial differential equations with the
coupling strength proportional to the inverse square of the longitudinal-to-transverse aspect ratio.
For a large aspect ratio, the coupling is weak. These two-dimensional partial differential equations
can be solved independently using an iterative approach. The iterations converge quickly due to
the large aspect ratio of the beam. For a transverse round conducting pipe, the two-dimensional
Poisson equation is solved using a Bessel function approximation and a Fourier function approx-
imation. The three-dimensional Poisson solver can have important applications in the study of
the space-charge effects in the high intensity proton storge ring accelerator or induction linear

accelerator for heavy ion fusion where the ratio of bunch length to the transverse size is large.
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I. INTRODUCTION

Solving the three-dimensional (3D) Poisson equation for the electrostatic potential of a
charged long beam bunch in a conducting pipe has important applications in beam dynamics
studies of modern accelerator physics. Recently, there has been increasing interest in utilizing
high intensity beams for future accelerator applications, e.g, accelerator-driven spallation
neutron source (SNS), and Fermilab booster accelerator upgrade. In these applications, the
nonlinear space-charge forces from the charged particle interactions can cause particle loss,
which results in the radioactivation of the accelerators. To minmize particle losses, self-
consistent particle-in-cell (PIC) models have been developed to simulate charged particle
motion in the accelerators [1-3]. These models include both the space-charge forces from
the beam and the forces from complex external fields. To calculate the space-charge forces,
we must solve the Poisson equation for a given charge density distribution. A key issue in
the PIC simulations is to solve the Poisson equation efficiently, at each time step, subject
to the appropriate boundary conditions. In many applications, the computation of the
electrostatic potential of a long bunch beam inside a conducting pipe with open ends is of
particular importance.

In previous studies, a number of methods for solving Poisson’s equation in a closed com-
putational domain have been studied [4-8]. To use these methods for solving the Poisson
equation in a conducing pipe with open end boundary conditions requires a large computa-
tion domain so that the potential vanishes at the ends of the domain. This is inefficient for
beam dynamics studies, since only the potential inside the beam is needed. Furthermore,
the choice of computational domain is not straightforward and usually requires solving Pois-
son’s equation twice to ensure that the computational domain is large enough. An efficient
method has been proposed in our previous study using a boundary matching procedure [9].
However, that method used a finite difference scheme for the longitudinal discretization. For
a long bunch with very large longitudinal to transverse aspect ratio, e.g. > 100, the use of a
finite difference method in the longitudinal direction is computational efficient. For example,
in the SNS accelerator, the beam has a longitudinal size of order of 100 meters while the
transerse size of the beam is only a few centimeters. Putting a computational mesh on such
a beam would require a large number of grid points longitudinally in order to get sufficient

resolution. On the other hand, the spectral function approximation can have a much higher



accuracy than the finite difference approximation. The open boundary conditions that the
electric potential disappears at infinite distance leads to a natural choice of the Hermite-
Gaussian function as a basis function. After approximating the longitudinal dependence of
the electric potential and the charge density distribution using a Hermite-Gaussian series,
we obtain a group of coupled two-dimensional (2D) partial differential equations (PDEs).
Solving these coupled two-dimensional PDEs presents the same challenge as the original 3D
Poisson equation. Fortunately, for a beam with large aspect ratio, the coupling strength of
these two dimensioal PDEs is proportional to the inverse square of the aspect ratio. This
suggests that for a beam with a large aspect ratio, the coupling between individual 2D PDEs
for each longitudinal mode is weak. We have used an iterative approach and treated the
coupling terms as source terms. This reduces the original 3D Poisson equation to a group
of 2D Poisson equations. The iteration converges very quickly due to the weak coupling
resulting from a large aspect ratio. The resulting two-dimensional Poisson equations are
solved using a Bessel function and a Fourier function approximation in a transverse round
conducting pipe. For a charged beam bunch in a bent conducting pipe, e.g. in storage
ring accelerator, we have written the 3D Poisson equation in Frenet-Serret coordinates. The
contribution from the curved structure has a multipler proportional to the ratio of pipe
transverse size to the curvature radius. For most accelerators with curvature radius varying
from 1 to 1000 meters, this ratio would be of order 1072 to 1075. Again this term can
be treated as a perturbative source term in the above iterative approach and the iteration
converges quickly.

The organization of this paper is as follows: The physical model and numerical methods
are described in Section II. The numerical tests of the 3D Poisson solver are presented in

Section III. The conclusions are drawn in Section IV.

II. NUMERICAL METHODS

We first discuss the solution of the 3D Poisson equation in a straight conducting pipe. For
a pipe with circular cross section, we write the dimensionless Poisson equation in cylindric

coordinates as:
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Here, ¢ denotes the dimensionless electrostatic potential, p the dimensionless charge den-
sity function,  and z the dimensionless radial and longitudinal distance. The boundary

conditions for the potential are:

o(r=1,6,2) =0 (2)
o(r,0+2m,2) = @(r,0,2) (3)
o(r,0,z=+xo00) = 0 (4)

Here, we have chosen the radial pipe radius e as the length scale so that the radial boundary
condition is set at » = 1. The charge density p and electrostatic potential ¢ can be approx-
imated using a Hermite-Gaussian series along the z-axis so that the longitudinal boundary

conditions in Eq. 4 are naturally satistifed.

p(?", 0, Z) = ni:o pn(rv 0)%n(z) (5)
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The scaled Hermite-Gaussian function #H,, is defined as

2
Hal2) = Hal5) exp (5 25) (7
where A is the dimensionless longitudinal scaling constant, which is the longitudinal to
transverse aspect ratio, A = o,/a with o, the longitudinal beam rms size, H,, is the nth
order Hermite polynominal with properties: Ho(2) =1, Hi(z) = 2z, - -+, Hp(2) = 22H, 1 —
2(n — 1)H,_5. The scaled Hermite-Gaussian function #H has the properties:
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where 0., = 1 for m = n and 6., = 0 for m # n. The expansion coefficients p, and ¢, can

be obtained from

pul(r, ) = Z"n‘\/_A./ p(r,0, 2)Ho(2)d2 (10)

On(r,0) = Z"n‘fA/ (r, 8, 2)H,(2)dz (11)



Substituting the functions p and ¢ into the 3D Poisson Eq. 1, and using the orthorgonality
of the scaled Hermite-Gaussian functions and Eq. 9, the 3D Poisson equation is reduced to

a group of coupled 2D PDEs with each equation satisfying

1 1
V7 6n + ( bn—z = 520+ )b + (n+2)(n+ 1)éni2) 5 = —pn (12)
A2
where V2 is the transverse Laplace operator V2 = % + %3% + r%i?_;' Eq. 12 is a group of

coupled two-dimensional partial differential equations. Each longitudinal mode n is coupled
to the mode n — 2 and n + 2 with a coupling multiplier %. For a large longitudinal to
transverse aspect ratio A, the coupling between different modes is weak. The contributions
from the coupling modes in the second term of Eq. 12 can be treated as a perturbative

source term using an iterative approach. The detailed procedure is as follows:

V6l = (13)
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Here, the superscript of the electric potential ¢ denotes the iteration number. For a large
aspect ratio A, the ¢,, will converge to the solution of Eq. 12 within a few iterations.
During each iteration, we need to solve a two-dimensional Poisson equation with the
updated source term. The periodic boundary condition for the potential along the 8 direction
suggests the use of a complex exponential eigenfunction in that direction. A Bessel function
is an appropriate eigenfunction in the radial direction for a round conducting pipe. Hence,

we can approximate the potential ¢ and source term p as follows,

Nm/2-1 N,

pn(r7 9) = Z an fVlmT exp(—zm@) (16)
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where 7, is a solution of

The pi™ and ¢'™ are determined from

27
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1 2 1
gm = T /0 /0 (1, 8) exp(imB) Jom (Vi) drdf. (20)

For the first iteration, multiplying Eq. 13 by exp(im8)rJ,,(v,r) and integrating from 0 to
27 and 0 to 1, we obtain

S = 05 Viem (21)
A similar expansion can be applied to the next iterations except that the source terms
in the two-dimensional Poisson equation include the contributions from the charge density
functions and from the electric potentials calculated in the last iteration.

For the charged beam in a bent conducting pipe, the electrical potential will have the same
boundary conditions as that in the straight pipe except that in this case the longitudinal
coordinate is related to the arc length along the bend. A schematic plot of the charged
particles inside a bent conducting pipe is shown in Fig. 1. The bending radius R is large
compared with the transverse pipe radius ¢. The bunch length of the charged particles is also
significantly larger than the pipe radius. Using Frenet-Serret coordinates, the dimensionless

3D Poisson equation can be rewritten as
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Here, R = Ry/a is the normalized curvature radius with Ry the physical curvature radius.
Approximating the electric potential ¢ and charge density p in the longitudinal direction
by the scaled Hermit-Gaussian series, we obtain for each mode n a group of coupled two-

dimensional partial equations similiar to Eqs 13-15:
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These equations can be solved using an iterative procedure:
Viqﬁé = —Pn (24)
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FIG. 1: A schematic plot of the charged particles inside a bent pipe.
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Now there are two parameters, 1/R and 1/A?, affecting the convergence of the iteration. For
most high intensity storage ring accelerators, the physical curvature is of order 100 meters
while the transverse pipe radius is about several centimeters. This leads to R in the range
of 1000 — 10000. For a long bunch which normally occupies a fraction of the ring, the above

iteration for each mode will converge quickly.

III. NUMERICAL TESTS

The numerical algorithms dicussed in the preceding section are tested using a Gaussian
charge distribution in a round conducting pipe. The Gaussian distribution closely approx-
imates the charged particle distribution observed in real accelerator operation. For the
convenience of comparison with the Green function solution in a straight conducting pipe,
we assume that the beam is axisymmetric. The charge density function is given as

exp(—3(fm +5)) : r<l

plr,z) = (27)
00 : r>1



Here, the beam has a normalized transverse rms size 0.1 and a normalized longitudinal rms
size A. In a straight conducting pipe, the analytical solution for the axisymmetrical Poisson
equation using a Green function method is given by

1S Jo(Bar)
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where Jo(ay,) =0 and Sha = oy, [10].

To see the effects of the longtidutinal-to-transverse aspect ratio on the convergence of
the coupled two-dimensional Poisson’s equations, we have given in Fig. 2 the iteration error
as a function of iteration number for aspect ratio A = 2,10,100, 1000 using the charge
distribution in Eq. 27. Here the iteration error at step i is defined as Er; = SN o |¢E (r, 2) —
¢71(r, z)| with initial ¢ = 0.0, where || denotes the norm 1 of a matrix. We see that with
increase of the aspect ratio, the iteration has converged rapidly. For even a moderate aspect
ratio A = 10, it takes less than 10 iterations to reach an iteration error 107'°. In this test,
the longitudinal mode number for the scaled Hermite-Gaussian series is 10. The longitudinal
mode number required for the solution of the above example depends on the size of aspect
ratio A. Fig. 3 shows the normalized electric potential as a function of z on the axis from the
numerical solution with maximum longitudinal mode number 2, 6, and 10, for aspect ratio
A =2 (left) and A = 10 (right). In this figure, we also show the solution from the analytical
Green function calculation for comparison. We see that for small aspect ratio A = 2, as the
Hermite-Gaussian mode number increases from 2 to 10, the numerical solutions gradually
approach the Green function solution. For aspect ratio A = 10, the numerical solutions
from all three maximum mode numbers are in excellent agreement with the Green function
solution. In Fig. 4, we give a comparison of the numerical solutions and the Green function
solutions as a function of z (left) at » = 0, 0.25, 0.5, and 0.75, and as a function of 7 (right)
at z = 0 and 1.875 A with A = 10 in the above example. We see that the two approaches
agree very well at all locations. However, the Green function approach is much slower than
the numerical method we proposed here.

The numerical algorithm for a long bunch in the bent conducting pipe has also been tested
using the Gaussian charge distribution given in Eq. 27. Figure 5 shows the iteration error as a
function of iteration number for the normalized curvature radius R = 2, 5, 10, and 100. The
longitudinal-to-transverse aspect ratio is 10 in this case with maximum longitudinal Hermite-

Gaussian mode number 10. As the curvature radius increases, the iteration converges quickly.
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FIG. 2: The norm 1 errors as a function of iteration number for aspect ratio A = 2, 10, 100, 100.
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FIG. 3: The normalized electric potential as a function of z on the axis with Hermite-Gaussian

mode number 2, 6, and 10 for aspect ratio A = 2 (left) and 10 (right).

Comparing with Fig. 2, we see that the convergence with increasing curvature radius is not
as fast as that with increasing aspect ratio A. This is because that the contributions from
the curvature term in the preceding iteration scale as 1/R for a fixed aspect ratio in the bent
pipe while contributions from the coupling term scale as 1/A2% in the straight conducting
pipe. Figure 6 gives the numerical solutions of the normalized electric potential as a function
of z (left) at r = 0.5 and as a function of r (right) on the axis for R = 2, 5, 10, 100 in a
bent conducting pipe together with the solutions for a straight pipe. We see that as the
curvature radius increases, the numerial solutions in the bent conducting pipe gradually
approach those in the straight pipe. For R = 100 in a bent pipe, there is little difference
between the two solutions. This suggests that for large curvature radius as used in most
store ring accelerators, the effect of the curvature is very weak in the solution of the 3D

Poisson equation.
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FIG. 4: The normalized electric potential as a function of z at » = 0, 0.25, 0.5, and 0.75, and as a

function of r (right) at z = 0 and 1.8754 with A = 10 together with the Green function solution.
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FIG. 5: The norm 1 errors as a function of iteration number for the normalized curvature radius

R=2,5, 10, and 100.
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FIG. 6: The numerical solutions of the normalized electric potential as a function of z (left) at
r = 0.5 and as a function of r (right) on axis for R = 2, 5, 10, 100 in a bent conducting pipe

together with the solutions from a straight pipe.
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IV. CONCLUSIONS

In this paper, we presented a three-dimensional Poisson solver for the electrostatic po-
tential of a charged beam in a straight and a bent conducting pipe with open-end boundary
conditions. Using a Hermite-Gaussian series to represent the longitudinal dependence of
the electric potential and charge density distribution, the original three-dimensional Poisson
equation is reduced to a group of coupled two-dimensional PDEs. With large longitudinal-
to-transverse aspect ratio, the coupling is weak. The resulting two-dimensional PDEs can
be solved independently using an iterative approach, which converges rapidly (within a cou-
ple of iterations). The same iterative procedure is also used to solve the three-dimensional
Poisson equation in a bent conducting pipe. The rate of convergence in this case depends
on both the bunch aspect ratio and the normalized curvature radius. For the physical
applications in most accelerators, both the aspect ratio and the normalized curvature ra-
dius are large enough to guarantee fast convergence of the iteration. In the solution of
the two-dimensional Poisson equation, we have used a Bessel function approximation and a
Fourier function approximation for the round conducting cross section. In general, the same
Hermite-Gaussian approximation followed by an iterative procedure can also be applied to
solving the three-dimensional Poisson equation subject to other type of transverse boundary

conditions.
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